

ATMOsphere Europe 2011

waste heat recovery of a transcritical CO₂ system with adsorption technology

Raphael Gerber

Content

- \square Why using CO₂
- Adsorption technology
- Combining two technologies
- Efficiency analysis
- Barriers & solutions
- Lessons learned and outlook
- Summary

CO₂ commercial references

2

CO₂-installations in medium and large commercial refrigeration, Switzerland (engineered by Frigo-Consulting AG)

ATMOsphere Europe 2011, Natural Refrigerants faster to Europe Raphael Gerber, www.frigoconsulting.com

Useful rejected heat of different packs

ambient temperature [℃]

ATMOsphere Europe 2011, Natural Refrigerants faster to Europe Raphael Gerber, www.frigoconsulting.com

adsorption technology

, Water as natural refrigerant

- A: H₂O evaporates and rises into chamber B
- **B:** H₂O deposes on the surface of the silica gel and heat is rejected (dry cooler)
- **C:** (waste) heat drives out H₂O in chamber C, which rises to chamber D
- **D:** H₂O condensates and heat is rejected to the dry cooler
- E: The function of chamber B and C is switched periodically

Place of installation

- 5
- Prodega St-Blaise, Switzerland
- Cash & Carry Market
- Medium temperature refrigerated area: 400 m²
- Total refrigerated area: 1'150 m²
- Transcritical CO₂-pack
 - cooling capacity: 86 kW
 - evaporation temperature: -10 °C

Place of installation

- Prodega St-Blaise, Switzerland
- Cash & Carry Market
- Medium temperature refrigerated area: 400 m²

Energy flow

7

Potential application for cooling energy

cooling energy per year

air conditioning

support air conditioning

sub cool CO₂-pack

→ support CO₂-refrigeration-system

 \rightarrow process optimization of CO₂-refregeration-system

assumptions:

type: ACS 08

manufacturer: SorTech AG

location: Neuchatel, Switzerland

temperature range: $T_{amb min} = +14^{\circ}C$

 $T_{amb max} = +34^{\circ}C$

Integration of adsorption chiller

Efficiency analysis of refrigeration system

10

Efficiency analysis of refrigeration system

High pressure setpoint of the transcritical CO₂-pack

Efficiency analysis of refrigeration system

Prozess of transcritical CO2-pack plotted in p-h-diagramm

23. August 2011 (11:00 bis 13:00), average ambient temperature: +25°C

Prozess of transcritical CO2-pack plotted in p-h-diagramm

23. August 2011 (11:00 bis 13:00), average ambient temperature: +25°C

Barriers and solutions

- finding good
 parameters for
 varying operating
 conditions is crucial
- defective valve flap of adsorption chiller needed repair

Lessons learned

15

- The adsorption chiller is not used to capacity due to lower waste heat available
 - Iower workloads of CO₂-pack than assumed
 - system can be further optimized by increasing available waste heat
- Special attention needs to be put on system dynamics
- Initial evaluations indicate that the cold storage is not absolutely necessary and thereby cost can be reduced

Further applications

- Support cold vapor process with:
 - high amounts of waste heat
 - on a high temperature level
 - especially in warm climates
- Particularly for systems with the refrigerants:
 - R744 (CO₂)
 - R717 (NH₃)
- Air conditioning by waste heat

Partners

ATMOsphere Europe 2011, Natural Refrigerants faster to Europe Raphael Gerber, www.frigoconsulting.com

FRICO CONSULING AG

Summary

18

- The adsorption technology is an option to optimize the overall efficiency of transcritical CO₂-systems bases on standard components.
- Further analysis and optimization will allow higher efficiencies of future systems.
- Only natural refrigerants are used: CO₂ and water.

ATMOsphere Europe 2011

waste heat recovery of a transcritical CO₂ system with adsorption technology

Raphael Gerber