Judith Evans, FRPERC, University of Bristol

Energy savings in cold storage

Cold stores – main issues

Food Refrigeration & Process Engineering Research Centre Brunel UNIVERSITY WEST LONDON SOUTH BANK UNIVERSITY UNIVERSITY UNIVERSITY of Sunderland

University of

- Energy large proportion of costs (~60%)
- Recent large increases in energy costs
- Large variations in energy efficiency
- Awareness of global warming, reduction in CO₂ emissions

Cold stores - chilled

Cold stores - frozen

Cold stores - mixed

kWh/m³/yr

- 1. Conduction
- 2. Infiltration
- 3. Fans
- 4. Food
- 5. Lighting
- 6. Machinery
- 7. People
- 8. Radiation

Energy saving

- Food
- Room structure
- Infiltration
- Optimisation/design of refrigeration system
- Operation of refrigeration system
- Operation of fans
- Choice of equipment
- Maintenance
- Free cooling/heat recovery

Examples of energy reduction in cold stores

University of

Sunderland

- All heat loads on store + refrigeration system
- 2. Poorly maintained R717 plant
 - Refrigeration system optimisation only
- **3.** Well maintained R717 plant
 - Refrigeration system optimisation only

Example 1

Store	Rooms	Size (m²)	Refrigeration system
1	3 frozen	1550	DX, single stage compression,
	chambers		evaporative condensers, R22
2	1 frozen chamber	910	LP receiver, twin screw
			economised compressor, R22
3	3 chilled/frozen	2458	DX, single stage compression,
	chambers		evaporative condensers, R22

Example 1. Data collected

- Store temperature (air-on, air-off, simulated product)
- Refrigeration system temperatures
- Door openings
- Food entry/exit quantity and temperature
- People and machinery entry/exit
- Energy consumption (every 30 minutes)
- Meteorological data
- Performance data on refrigeration system components, store construction

Example 1. Results – heat loads

Example 1. Heat load across insulation

Example 1. Fixed loads

- Pulsing fans
- Increased load shedding
- Defrost optimisation
 - Off-cycle in chillers (40,000 kWh per year in store 3)
 - Optimisation of settings

Example 1. Infiltration

Example 1. Efficiency of refrigeration plant

All plant except 2 ran with high superheat, SLHE increase useful area of evaporator

Example 1. Options to improve

	Store 1 (F)	Store 2 (F)	Store 3 (F/C)
Size (m ³)	1550	910	2458
	kWh/m³/yr		
Current	59	91	52
Pedestrian doors	53	85	50
Rapid rolls doors/improved strip curtains	52	82	49
Defrost optimisation	58	91	49
Off-cycle defrost			51
Separate entrance to store	51		
Automatic closing door	57		
Preventing door being jammed open		88	
Suction liquid heat exchangers	56		44
Liquid pressure amplification	49		38
Evaporative condensers	58	56	
Low pressure receiver (lpr)	40		32
Improve insulation on walls to 10"	51	86	46
Reduce the speed and off load compressor			50
Potential saving from best technology	>32%	>38%	>38%
Potential achievable by updating current	>14%	>10%	>15%

Best mixed = 27 kWh/m³/yr (best savings = 32 kWh/m³/yr)

Best freezer = 48 kWh/m³/yr (best savings = 40/56 kWh/m³/yr)

Energy savings achieved

- Not all improvements carried out (long payback periods)
 - PED doors
 - Rapid roll doors
 - LPA
 - SLHE
 - Evaporative condenser
- Should have achieved 17.3% reduction in energy if implemented all above improvements
- Achieved 9.4%

Example 2

- 2 large cold store plants
- Store 1+blast freezer
- Stores 2+3 freezers
- Ammonia, 2 stage compression, pump recirculation system
- 35 years old

Example 2. Cold stores - options to improve

	Store 1+blast freezer (F/C)	Store 2+3 (F)	
Size (m ³)	12,399	7,347	
	kWh/m³/yr		
Current	88	79	
Increase load, operate plant for shorter periods	84	78	
Adjust surge drum and intercooler pressures to loads	85	79	
Clear evaporators of ice, repair defrost timers	86	78	
Overhaul compressors	61	76	
Repair hot gas valve	87	n/a	
Repair PRV in ammonia pumps	86	78	
Reinsulate pipes to plant	76	74	
Reinsulate surge drum	86	79	
Potential saving from better maintenance	10-60%	3-16%	

n.b. Only refrigeration, potential additional savings from operation and heat loads

Best mixed = 27 kWh/m³/yr (best savings = 61 kWh/m³/yr)

Best freezer = 48 kWh/m³/yr (best savings = 74 kWh/m³/yr)

Example 3

- 2 large cold store plants
- Store 1 freezer (2 rooms)
- Store 2 freezer (5 rooms)
- Blast freezer
- Ammonia, 2 stage compression, pump recirculation system, evaporative condensers
- Various ages (20-40 years old)
- Well maintained

Example 3. Cold stores - options to improve

	Store 1 (F)	Store 2 (F/C)	Blast freezer	
Size (m ³)	13,925	21,783	4,981	
	kWh/m³/yr			
Current	30	28	415	
1 Reduce condenser pressure	26			
2 Reduce surge drum temperature	36			
1+2	30			
1 Float condenser pressure		25		
2 Increase evaporator temperature		25		
1+2		21		
Fully flooded evaporator, compressor offloading			415 (faster freezing)	
Potential saving from better operation	0 (13%)	26%	Better operation	

n.b. Only refrigeration, potential additional savings from operation and heat loads

Best mixed = 27 kWh/m³/yr (best savings = 21 kWh/m³/yr)

Best freezer = 48 kWh/m³/yr (best savings = 30 kWh/m³/yr)

Target and monitoring

0

4000

25

Dry bulb temperature (°C)

Leakage

Contention of the second secon

Contribution to global warming

- Leakage
 - Lack of detailed information 7-10% (UNEP, 2003)
 - May be higher 17% (Clodic and Palandre, 2004)
- Cold stores R22 (15-20%), R717 (60-70% of industrial refrigeration)
- Lower leakage of R717 due to pungent smell
- R22 is an HCFC being phased out from 2010
- 15% loss of refrigerant can double energy for a given amount of cooling

GWP	R717	R22	R404A	R134a	R407C	R507	HC	CO_2
	0	1,700	3,750	1,300	1,980	3,300	0	1

Options to improve

- Large range in efficiency of current stores
- Often varied issues to reduce energy
- Potential improvements available, some simple and inexpensive
- Identifying improvements not always simple or easy for end users
- Data to justify investment in savings not always available

University of BRISTOL Pood Refrigeration & Process Engineering Research Centre Brunel UNIVERSITY WEST LONDON SOUTH BANK UNIVERSITY UNIVERSITY UNIVERSITY of Sunderland

Further information:

http://www.frperc.bris.ac.uk/defraenergy/index.html

Specifically on cold storage:

http://www.frperc.bris.ac.uk/defraenergy/storage.html

Storage

Site Location: <u>Home</u> > **Storage**

- Home
- About this project
- <u>Sectoral focus reports</u>
- <u>Top 10 energy users</u>
- Supply network
- <u>Maintenance</u>
- Events
- Join stakeholders group
- Links
 Downloads
- Downloads
 Contact us

- Reports on the refrigeration energy usages in Storage can be downloaded from this page, the <u>sectoral focus page</u>, or the <u>downloads page</u>
 - Frozen storage generic
 - Potato storage bulk raw potatoes

Chilled and frozen cold storage and distribution operations have been identified as major users of energy.

Investigations at three UK cold storage complexes demonstrated significant opportunities for energy savings. At least 30% in the 5 stores examined. Options to reduce energy in 3 direct expansion refrigeration system stores and 2 ammonia stores were identified and quantified.

