

THE USE OF AMMONIA & CO₂ HEAT PUMPS IN FOOD PROCESSING

By KLAAS VISSER

L. AIRAH, Hon M.IIR, M. Inst. R, M. eurammon, Aff. CIBSE **PRINCIPAL KAV CONSULTING Pty. Ltd** P.O. BOX 1146, KANGAROO FLAT, Vic 3555 AUSTRALIA Tel:- +61 3 54 479 436, Fax:- +61 3 54 479 805

kavconsult@bigpond.com

Table 1. Some Food Processes Requiring Simultaneous Heating and Cooling

		TYPE OF HEATING	TYPE OF COOLING APPLIED				
PROCESSING TYPE	Warm Water	Hot Water	Product Heating	Product Chilling	Product Freezing	Chilled Water	Space Cooling
Beef slaughter	\checkmark	\checkmark	Decontamination	\checkmark	\checkmark		\checkmark
Sheep slaughter	\checkmark	\checkmark	Decontamination	\checkmark	\checkmark		\checkmark
Pig slaughter	\checkmark	\checkmark	Scalding	\checkmark	\checkmark		\checkmark
Chicken processing	\checkmark	\checkmark	Scalding	\checkmark	\checkmark	\checkmark	\checkmark
Milk processing		\checkmark	Pasteurizing	\checkmark	\checkmark	\checkmark	~
French fries			Drying		\checkmark		
Vegetables		✓	Blanching	✓	~	✓	
Beer brewing		\checkmark	\checkmark	~		\checkmark	

Table 2. Specific utilities consumption Australian red meat industry, 1978 (Graham, 1979)

	UTILITY TYPE	SPECIFIC UTILITY CONSUMPT		
No.	Description	Min	Max	Avg
1	Electricity consumption – MJ/tonne HSCW			
	.1 Range and average	170	2,100	1,030
	.2 No rendering, no cold store			420
	.3 Rendering, no cold store			842
	.4 No rendering, cold store			837
	.5 Rendering, cold store			1,083
2	Fuel consumption – MJ/tonne HSCW			
	.1 Range and average	460	10,510	4,120
	.2 Water heating only			1,090
	.3 Rendering with waste heat recovery			4,440
	.4 Rendering with no waste heat recovery			5,140
3	Total energy consumption – MJ/tonne HSW			
	Electricity plus gas	630	12,610	5,150
4	Water consumption – M ³ /tonne HSCW			
	Range and average	4.1	43	16.6

Figure 1. The influence of plant utilisation on volume of water used per tonne dressed carcass weight processed – Graham (1979)

1st IIR International Cold Chain & Sustainability Conference, Cambridge, UK 29th to 31st March 2010

(iif)

PTY LTD

Figure 2. The influence of cold store capacity on power used per tonne of dressed carcass weight processed

Table 3. Approximate utility consumption Australian export meat processing industry

	UTILITY TYPE	SPECIFIC UTILITY CONSUMPTION			
No.	Description	1978 ⁽¹⁾	1998 ⁽²⁾	Future ⁽²⁾	
1	Water – It/tonne HSCW ⁽³⁾				
	.1 Range	4.1 - 43	9 - 14	4 - 5	
	.2 Average	16.6	12	4.5	
2	Electricity, GJ/tonne HSCW				
	.1 Range	0.2 - 2.1	0.85 - 1.1	0.75 - 1.0	
	.2 Average	1.03	1.0	0.9	
3	Fuel, GJ/tonne HSCW				
	.1 Range	0.46 - 10.5	3.0 - 5	2.5 - 3.0	
	.2 Average	4.12	3.5	2.9	
4	Energy total, GJ/tonne HSCW				
	.1 Range	0.66 - 12.6	3.4 - 5.4	3.25 - 4.0	
	.2 Average	5.15	4.5	3.8	

⁽¹⁾ From Table 2

⁽²⁾ Visser (1998)

⁽³⁾ HSCW = Hot Standard Carcase Weight

Table 4. Energy Consumption of Three Processing Plants

	PARAMETER						
No	DESCRIPTION	PLANT BT SPECIES PRODUCT TTPE					
1	Livestock converted	Piç	gs ⁽¹⁾	Chi	ckens	Beef - Proposed ⁽²⁾	
2	Type of plant	Chilled c	arcases ⁽³⁾	Full se	ervice (4)	Full se	ervice ⁽⁵⁾
3	Type of refrigeration plant and condenser type	Single stag conc	e NH ₃ , evap. lenser	Two stage NH ₃ , evap. condenser		Two stage tra adiabaticall co	nscritical CO ₂ , y assist. gas oler
4	Type of water heating	Gas	NH₃ heat pump & gas	Gas	NH₃ heat pump & gas	Gas	Transc. CO ₂ & gas
5	Annual Dressed Weight, (tonnes)	15	,000	47	,500	22	,500
6	Annual electrical energy cons. kWhs/1000	1,800	2,186 ⁽⁶⁾	15,000	16,761 ⁽⁶⁾	3,600	4,000 ⁽⁷⁾
7	Annual electrical energy cons. GJ	6,480	7,855	54,000	60,340	12,960	14,400
8	Specific elect. energy cons. kWhr/t	120	146	316	353	160	178
9	Specific elect. energy cons. GJ/t	0.43	0.53	1.14	1.27	0.58	0.64
10	Gas consumption, GJ	18,250	7,000 ⁽⁶⁾	56,905	5,000 ⁽⁶⁾	18,037	5,175 ⁽⁷⁾
11	Specific gas consumption, GJ/t	1.22	0.47	1.18	0.11	0.8	0.23
12	Total spec. energy cons. (9+11) GJ/t	1.67	1.0	2.32	1.38	1.38	0.87
13	Electrical CO ₂ emissions, tonne 1.2kg/kWhr	2,160	2,618	18,000	20,113	4.320	4,800
14	Gas CO ₂ emissions, tonne 56.3 Kg/GJ	1,027	394	3,204	282	1,015	291
15	Total CO ₂ emissions, (13+14)	3,087	3,012	21,209	20,395	5,335	5,091
16	Specific CO ₂ emissions, t/tonne (15÷5)	0.206	0.201	0.447	0.429	0.237	0.226
17	Reduction in specific energy cons. GJ/t	-	0.67		0.094		0.51
18	Reduction in specific energy cons. %	-	40		40.5		37.0
19	Reduction in specific emissions, t/t		0.005		0.018		0.011
20	Reduction in specific emissions, %		2.5		4		4.6

⁽¹⁾ Actual existing plants with gas water heating and calculated heat pumps.

⁽²⁾ This superior prime beef plant did not proceed due to competition from ethanol production for feed grain.

⁽³⁾ Plant produced chilled carcases only and has no freezing or cold store.

(4) Plant produces mostly fresh products for same day delivery but uses low temp. blast chilling. Also has small amount of blast freezing and cold storage.

⁽⁵⁾ Plant would produce high value chilled beef with little freezing and a small cold store.

(6) Based on a COP of 5.55 with liquid sub-cooling and heat recovery from high stage discharge and 10% losses between metering point and consumer. Assumed gas heater efficiency 80%. See Item 37.3 Table 7.

⁽⁷⁾ 11% extra transcritical running. Plant would run transcritically during part of the year due to hot climate.

Table 5. Calculation of NH₃ heat pump power consumption to generate 68°C hot water

	PARAMETER	PIG PLANT	CHICKEN PLANT
No	DESCRIPTION	VALUE	VALUE
1	Amount of heat required, GJ Table 4, Item 10	18,250	56,905
2	Heat supplied by gas, GJ Table 4, Item 10	7,000	5,000
3	Heat from heat pump, GJ	11,250	51,905
4	Nett heat from heat pump, GJ @ 80% gas heater efficiency	9,000	41,524
5	Total kWhrs @ 277.77 kWhr/GJ, x 1,000	2,500	11,534
6	COP including high stage compressor desuperheat and liquid sub-cooling	5.55	5.55
7	Electrical power consumption, 6 ÷ (+ 1)	382	1,761
8	Base power consumption, Item 6, Table 4, kWhrs x 1,000	1,800	15,000
9	Power consumption with heat pump, these are the values for Item 6 in the heat pump columns in Table 4 above, kWhrs x 1,000	2,182	16,761

Table 6. Heat Pump Performance of a 330m3/hr swept VolumeHigh Pressure Ammonia Compressor

SST ⁰C	Qe kW	N BkW	Qc kW	СОР	Parameter	
25.0	579.1	136.1	709.6	4.25	Sat. suction temperature	30
27.5	635.3	138.3	769.7	4.60	Condensing temperature, ⁰ C	73
28.4	657.0	138.6	795.6	4.74	Water inlet temp, ⁰ C	20
30.0	695.2	139.4	832.7	4.99	Water outlet temp, ^o C	68
32.5	758.7	140.4	898.6	5.41	Water temp rise, K	48
35.0	826.1	140.8	966.9	5.87	Condenser liquid subcool, K	5.0

In both cases a "reverse cascade" CO_2 heat pump is also calculated. In this case the NH₃ compressor would run at -10 SST/ +15°C SCT with a COP of 7.2. See Fig. 4. The CO₂ heat pump compressor at +10°C SST, and 80 bar discharge pressure for 68°C water and 100 bar for 80°C water. In all cases the gas cooler CO_2 exit temperature would be +20°C. From Fig. 3 we note the COP's at 20°C gas cooler exit are 4.85 at +10 SST and 80 bar and 3.9 at +10/100 bar. See Item 15, Table 7. It is clear that the reverse cascade CO_2 heat pump using the discharge of a high stage ammonia compressor is more efficient when generating both 68°C and 85°C hot water. The efficiency is in all cases enhanced by extracting heat from the 1st stage compressor discharge.

Figure 3. COP and Power Consumption Variation with Discharge Pressure and CO₂ Gas Cooler Exit Temperature

Saturated condensing temperature

Figure 4. Ammonia Compressor COP Variation with Sat. Condensing Temperature at -10°C Saturated Suction. N.B. Based on BKW

1st IIR International Cold Chain & Sustainability Conference, Cambridge, UK 29th to 31st March 2010

/iif

Figure 5. Ammonia CO₂ Cascade System with NH₃ Heat Pump for Process Water Heating. (Visser 2009)

Legend Figure 5

Item No	Description
1	Ammonia high stage compressor
2	Condenser
3	Liquid receiver
4	Cascade CO ₂ condenser
5	Suction trap
6	High stage CO ₂ pump accumulator
7	High stage CO ₂ liquid pump
8	High stage chilling and cooling including high occupancy areas
9	Low temp cold store on DX
10	Low temp CO ₂ pump accumulator
11	Low temp CO ₂ liquid pump
12	Process freezing loads with LR CO ₂ evaporators
13	CO ₂ compressor
14	Compressor discharge gas de-superheater
15	High pressure NH ₃ heat pump compressor
16	Ammonia condenser
17	Water cooled liquid NH ₃ sub-cooler
18	Hot water storage
19	Hot water circulation pump

Legend Figure 6

Item No	Description
1-13	See Figure 5 in previous slide
1B	High stage compressor matched to CO ₂ compressor item 17
14	1 st stage water heater from booster discharge
15	2 nd stage water heater from 1B discharge
16	Ammonia cascade condenser/CO ₂ evaporator
17	Transcritical single stage CO ₂ compressor + 10/105 bar
18	Compressor oil cooling – stage 3 water
19	CO ₂ water heater – stage 4
20	CO ₂ expansion vessel
21	Ammonia liquid receiver
22	Liquid Ammonia transfer pump
23	Screw compressor oil separator
24	Screw compressor oil pump

Figure 6. Schematic diagram of a CO_2/NH_3 cascade system with pumped CO_2 on high and low stages and also DX on low stage

Table 7. Comparison of 1,000 kW Heating Capacity Ammonia and CO2 Heat Pumpsto Deliver 68°C and 85°C Hot Water from a Mains Water Temperature of +15C

	PARAMETER	R WATER TEMP.			
No.	DESCRIPTION	+68°C		+8	5°C
1	Heat pump type	NH ₃ ⁽¹⁾	CO ₂ ⁽²⁾	NH ₃ ⁽¹⁾	CO ₂ ⁽²⁾
2	Heat pump capacity, kW	1,000	1,000	1,000	1,000
3	Initial water temp., °C	15	15	15	15
4	Final water temp., °C	68	68	85	85
5	Water temperature rise, K	53	53	70	70
6	Water flow rate, litres/second	4.5	4.5	3.4	3.4
7	Max. water temp. from heat pump, °C	68	68	68	85
8	Heat from heat pump, kW	1,000	1,000	757	1,000
9	Heat from gas, kW	0	0	243	0
10	Heat from 1st stage compressor superheat, kW ⁽³⁾	70	40	53	40
11	Heat from liquid sub cooling, kW ⁽⁴⁾	93	0	70	0
12	Heat rejected by heat pump compressor, kW	837	960	634	960
13	Heat pump Sat. Suction Temperature, °C	+30	+10	+30	+10
14	Heat pump cond. temp./press., °C/bara	+73	80 bar	+73	100 bar
15	Heat pump 's from Figs. 3 & 4	4.99 (5)	4.85 ⁽⁶⁾	4.99 ⁽⁵⁾	3.9 ⁽⁶⁾
16	Heat pump compressor power 12 ÷ (15 + 1)	140	164	106	196
17	Heat load to heat pump comp. 15x16	697	796	528	764
18	Ammonia 1st stage compressor SST, °C	-10	-10	-10	-10
19	Ammonia 1st stage compressor SCT, °C	+30	+15	+30	+15
20	$\rm NH_3$ 1st stage compressor 's from Fig. 4 $^{(7)}$	4.55	7.2	4.55	7.2
21	$\rm NH_3$ hi stage compressor superheat, %	10	5	10	5
22	Hi stage compressor liquid sub-cooling, %	0	0	0	0
23	Superheat from hi st compress. disch., kW ⁽⁸⁾	70	40	53	40

Table 7. Continued Comparison of 1,000 kW Heating Capacity Ammonia and CO2 Heat Pumpsto Deliver 68°C and 85°C Hot Water from a Mains Water Temperature of +15C

	PARAMETER	WATER TEMP.				
No.	DESCRIPTION	+6	8°C	+	35°C	
1	Heat pump type	NH ₃ ⁽¹⁾	CO ₂ ⁽²⁾	NH ₃ ⁽¹⁾	CO ₂ ⁽²⁾	
24	Heat from high stage NH ₃ compressor, kW	697	796	528	764	
25	Hi stage NH ₃ compr. power 24 ÷ (20 + 1)	126	97	95	93	
26	Total power, 16 + 25	266	263	201	289	
27	Credit condenser pump 1 fans	11	13	8	12	
28	Total power maximum demand	255	250	193	277	
29	Losses from power metering point to high efficiency motor consumers	10	10	10	10	
30	Actual MD from refrig. and heat pump	283	278	214	308	
31	Add gas heat, kW (see Item 9 above)	-	-	243	-	
32	Heater efficiency, %		-	80	-	
33	Total gas consumed, GJ(1GJ= 277.8 kWhr)	-	-	1.09	-	
34	Total power consumption, GJ (30 / 277.8)	1.02	1.0	0.77	1.1	
35	Total energy consumed, GJ/h	1.02	1.0	1.86	1.1	
36	Hourly emissions					
	.1 Electrical @ 1.2 kg/kWhr	340	334	257	368	
	.2 Gas @ 56.3 kg/GJ	<u> </u>	<u> </u>	61		
	.3 Total, kg/hr	340	334	318	368	
37	Total heating and cooling					
	.1 Total simult. heating and cooling, kW Item 2 plus Items (24 – 25)	1,571	1,699	1,433	1,671	
	.2 Total power consumption, kWhr, 30	283	278	517 ⁽⁹⁾	308	
	.3 Overall - 37.1/37.2 Actual	5.55	6.11	2.77	5.43	
38	Specific emissions kg/kW of heat and cold	0.216	0.197	0.219	0.22	

Table 8. Evaluation of Overall Heating and Cooling COP forHigh Stage Transcritical CO2 Refrigeration Systems

	PARAMETER				
No	DESCRIPTION	VALUE			
1	Water temperature, °C	+68 +85			
2	Sat. suction temp. CO ₂ compressor, °C	-5	-5		
3	Compressor discharge pressure, bara	80	100		
4	Heat pump capacity, kW	1,000	1,000		
5	from Figure 4	3.12	2.54		
6	Compressor BkW, 4 ÷ (5 + 1)	243	283		
7	Compressor capacity, kW 4 – 6	757	717		
8	Total kW heating and cooling	1,757	1,717		
9	heating and cooling, BkW	7.23	6.07		
10	Transmission losses (semi-hermetic compressors) %	5	5		
11	Real based on metered kW	6.87	5.76		

Table 9. Summary and Comparison of Various Heat Pumps

Heat pump type.	Water	Table reference		Total Cap. kW heating	Total	Pool	Specific	
types 1000 kW	°C	Table No.	ltem No.	and cooling kW	MD, kW	Real	kg/kW	
Two stage NH_3	68	7	37.1-3	1,571	283	5.55	0.216	
NH ₃ & CO ₂	68	7	37.1-3	1,699	278	6.11	0.197	
Two stage CO ₂	68	8	4, 7-9, 11	1,757	256	6.87	0.175	
Two stage NH_3 & gas	85	7	37.1 NH ₃ & gas	1,433	214 + 303	2.77	0.219	
NH ₃ & CO ₂	85	7	37.1 NH ₃ & CO ₂	1,671	308	5.43	0.22	
Two stage CO ₂	85	8	4, 7-9, 11	1,717	298	5.76	0.208	

Conclusions

- Energy Savings of 37 to 40% may be achieved when installing Ammonia and CO₂ to water heat pumps as additional stages to conventional industrial ammonia refrigeration systems.
- High COP's are achieved due to savings in condenser fan pump power and heat recovery from compressor discharges, oil cooling and maximum liquid desuperheating from the heat pump condenser to the liquid receiver of conventional ammonia refrigeration systems.
- Two stage transcritical CO₂ refrigeration plants with heat recovery perform better than three stage ammonia plants, with the third stage acting as a heat pump, as do reverse cascade CO₂ heat pumps. There is an optimisation solution required when high suction pressure transcritical CO₂ compressors become available.
- In this type of application, i.e. Single pass water heating, CO₂ heat pumps produce lower emissions per kW of heat produced.