

Opportunities for combined heating and cooling

A case study from Nestle Halifax

Dave Pearson Director of Innovation Star Refrigeration Ltd

Why bother?

www.thisismoney.co.uk

Supply of energy

www.thisismoney.co.uk

Nestlé UK Halifax

The Nestlé UK Halifax site covers approximately 3.0 hectares

In 2008 the site..

- Produced circa 30,000 tons of confectionery brands
- Multiple packaged glycol chillers with poor COPs utilised HCFC R22
- Was committed to the phase-out of R22 by 2010
- Generated 59,500 lb/hr (27,000kg/hr) of steam using coal fired boilers with low efficiency levels, circa 56%
- Was the last in Nestlé Zone Europe to use coal combustion for steam generation

Old Coal Fired Boiler House

Future Cooling Systems Options

Refrigerants Policy Natural Refrigerants = Ammonia

Central plant

Low charge design

Allowed radical re-design of chilled glycol system

Allowed development of the concept to maximise the capture & use of waste heat

Future Heating Systems Options

Option 1 – Central Gas Fired Boiler House

- + Simplest solution
- + Lowest capital cost
- + Compliance with UK air quality legislation
- Without existing site steam distribution upgrade overall steam system efficiency not improved

Option 2 – Combined Heat & Power (CHP) Plant

- + 1.5MW_e CHP system could deliver supplementary electricity & enough steam for site needs
- + Compliance with UK air quality legislation
- Without existing site steam distribution upgrade overall steam system efficiency not improved
- Flexibility of steam delivery to match future production patterns
- Uncertainty over future energy production benefits from CHP

Future Heating Systems Options

Option 3 – Geothermal Storage & Harvesting System

- + Infrastructure for both cooling & heating
- + Incorporating ammonia refrigeration & heat pump technology
- + Compliance with UK air quality legislation
- High capital costs
- Bore hole arrays required use of large area of available land leading to unacceptable limitations on future use

Option 4 – Steam Migration & Thermo Coupling

- Steam Migration moving from a single high grade steam generation source to multi-temperature generation systems suited to end user specific applications
- Thermo Coupling tying heat extracted at relative low temperature from site cooling demand to high temperature needs via heat pump technology

Option 4 – Steam Migration & Thermo Coupling

Heat Load	Duty	Load %	Temp. °C	Temp L/M/H
Calorifiers	(823 kW)	33%	60- 90	м
Domestic Hot Water	(89 kW)	3%	50 - 60	L
CIP Calorifiers	(131 kW)	5%	80 – 90	м
Cookers	(813 kW)	32%	120 – 125	Н
Bowl Washers	(252 kW)	10%	60 – 90	м
Other	(151 kW)	6%	60 – 90	Μ
Losses	(277kW)	11%	AII	LMH
TOTAL	(2536 kW)	100%		LMH

Assessment of Cooling & Heating Options

Technology	Energy	PVC (15years)	Qualitative Score
Central Gas Fired & R717 Chillers	5.26GJ/tonne	£23,368k	15
CHP & R717 Chillers	7.87GJ/tonne	£22,045k	19
Geothermal & Packaged R717 Chillers	2.13GJ/tonne	£17,197k	23
Migration & Thermal Coupling	3.93GJ/tonne	£20,243k	13

Old and New

Old Plant

Installed 1988

Cooling Capacity 18,435MBtu/hr @ +32°F 5.4MW @ 0°C

12off R22 DX packaged air cooled chillers

4off Fixed Speed Primary Glycol Pump

16off Fixed speed Secondary Pumps

Glycol +5degC to 0degC

COP Summer:2.82COP Winter:3.8

New Plant

Installed 2010

Cooling Capacity 10,242MBtu/hr @ +32°F 3.0MW @ 0°C

Heating Capacity4,267MBtu/hr@ 140°F1.25MW@ +60C

1off Common Low Charge NH3 system 4x Screw Compressor PU's incl x2 HP Units VSD Primary and Secondary Pumps

4x Flat bed Air Cooled Condensers 1x Flat bed Air Cooled Oil Cooler 1x CIP and CL Waste Heat Recover PU

COP Cooli	ng only:	4.0
COP Heati	ng and Cooling:	6.38

Ammonia System P-H Diagram

Ammonia System Key Features

- Compressors matched to their primary function cooling & heating or cooling only
- Separate high grade heat recovery packaged units for 'once through total loss' loads and the 'closed loop circuit' loads
- Ammonia screw compressors operating at high pressure Circuit design developed with three levels of system allowable pressure:
 1. 500psi (35bar) – heat pump compressors & heat recovery packages
 2. 360psi (25bar) – cooling only compressors, condensers, economiser
 - 3. 250psi (17bar) PHE evaporators & surge drum set
- The compressor control strategy
- Low refrigerant charge
- Air-cooled condensers operating with VSD fans

Screw Compressor Packaged Units

New Ammonia Cooling and Heating Plantroom

New Condenser Area

Food Factory Heating System

Re-Configured Chilled Glycol Circuits

REFRIGERATIO

The Heated Water Process Streams

CIP Hot Water Storage Tanks

	2008	2011	Annual Reduction
Capital Investment		\$6,300,000 £4,200,000	
Energy	\$2,700,000	\$1,290,000	\$1,410,000
	£1,800,000	£860,000	£940,000
Operational Cost	\$570,000	\$120,000	\$450,000
	£380,000	£80,000	£300,000
CO ₂ - CCL	\$495,000	\$247,500	\$247,500
	£330,000	£165,000	£165,000
Water	\$108,000	\$70,500	\$37,500
	£72,000	£47,000	£25,000
Total	\$3,765,000	\$1,657,500	\$2,145,000
	£2,510,000	£1,105,000	£1,430,000

Exchange Rate assumed \$1 = £1.50

Overall Environmental Benefits

	2008	2011	Annual Reduction	Annual Reduction %
Production Volume	31,900 tons (US) 29,000 tonnes	31,900 tons (US) 29,000 tonnes		
Energy per unit of Production	5.422 MBtu/ton 5.20 GJ/tonne	3.013 MBtu/ton 2.89 GJ/tonne	2.429 MBtu/ton 2.33 GJ/tonne	45%
CO ₂	22,000 tons (US) 20,000 tonnes	10,615 tons (US) 9,650 tonnes	11,385 tons (US) 10,350 tonnes	52%
HCFC	2,605 lb 1,184 kg	304 lb 138 kg	2,301 lb 1046 kg	88%
Particulates	3,872 lb 1,760 kg	0 lb 0 kg	3,872 lb 1,760 kg	100%
Water	13,825,970 gal (US) 52,337 m ³	9,094,385 gal (US) 34,426 m³	4,731,585 gal (US) 17,911 m³	34%

The Ammonia plant is now providing 750kW of waste heat to preheat towns water to the factory at +60degC whilst meeting the sites process cooling demand

The new refrigeration plant showed a 39% reduction in power consumption over the same 15 week calendar period between July and October for 2009 and 2010.

In November 2010 site commissioned the Closed-Loop heating circuits. More waste heat from the Ammonia plant is being utilised. It is estimated the 250kW currently utilised is set to double in line with design

The site is on target to achieve the level of savings identified in the cost benefit analysis

The capital cost of the project will be recovered within 4 years

Inland energy consumption, 1980 to 2009

Million tonnes of oil equivalent

Figures from DECC, "UK Energy in brief, 2010"

Split out fuel used to generate electricity

and remove the oil used for transport

Then convert the fuel to electricity.....

30.5% of all energy use is fossil fuel for heating, 18% is electricity (some of which is used for heating too!)

Figures from DECC, "Digest of United Kingdom Energy Statistics, 2010"

About 1/9 of the electricity used is for refrigeration and air-conditioning, including chillers. If we take an average CoP of 2 for all systems then the heat load is twice the electrical input.

All of the remaining fossil fuel and some of the electricity is used for heating

Heating vs Cooling

It looks as if the demand for heating is about nine times higher than the demand for cooling. The market for heat pumps is huge!

At present heat pumps are being designed and sold by refrigeration people – we need a bigger vision!

There are two independent hot water circuits: The Clean in Place circuit has a high load but is used intermittently. The closed loop circuit provides heat to the chocolate moulds during production and is used continuously.

	CIP circuit	Closed loop circuit
Water inlet (°C)	10	40
Water outlet (°C)	60	60
Water flow rate (kg/s)	3.57	5.95
Heating Duty (kW)	745	500
% in desuperheater	10.4%	10%
% in condenser	75.6%	75%
% in subcooler	14%	15%*

Conclusions

- Perkins Cycle heating is a great way to reduce CO₂e
- Deployment of these systems is pinned to fuel price
- We need to learn to think of heating systems giving "free cooling", not the other way around
- Heating without using the cooling is OK we just have to get used to the idea
- Selling the free cooling as a utility is an even better idea!

REFR

REFR

REFRIG

REFRI

So what does the future of Ammonia look like?

Applications to be embraced not ignored

Natural Refrigerant

ow Charge

Refrigerant Timeline

HCFCs

HCFCs

HFCs

Global Warming Potentials

Ammonia Experience

Proven Product

Ammonia – The Misconceptions

Ammonia – The Reality

Low Charge

Low Charge

Safety and Compliance

Coefficient of System Performance

Increased Efficiency

Reduced Running Costs

High Efficiency

High Efficiency

Proven Product

Think Differently-District Cooling and Desalination

